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In this paper we extend the difference formulation for radiation transport
to the case of a single atomic line. We examine the accuracy, performance
and stability of the difference formulation within the framework of the Sym-
bolic Implicit Monte Carlo method. The difference formulation, introduced
for thermal radiation by some of the authors, has the unique property that
the transport equation is written in terms that become small for thick sys-
tems. We find that the difference formulation has a significant advantage over
the standard formulation for a thick system. The correct treatment of the line
profile, however, requires that the difference formulation in the core of the line
be mixed with the standard formulation in the wings, and this may limit the
advantage of the method. We bypass this problem by using the gray approx-
imation. We develop three Monte Carlo solution methods based on different
degrees of implicitness for the treatment of the source terms, and we find only
conditional stability unless the source terms are treated fully implicitly.

1 Introduction

Time-dependent transport of radiation from resonance lines is an important
component of the physics of stellar atmospheres and of laser-produced plas-
mas. In optically thick systems, the radiation transport equation for photons
is dominated by many spontaneous emission and absorption events and is
tightly coupled to the level population equation. This system of equations
can be difficult to solve numerically in any discretized scheme in time and
space due to its stiffness and the wide range of opacities inherent in an atomic
line profile.
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It has been known for many years that the explicit Monte Carlo solution
of the radiation transport equation, coupled to the material response equa-
tion, for a strongly absorbing and emitting material, is numerically unstable.
One reason for this is that in optically thick regions both the emission and
absorption terms are large and the net emission (or absorption) of radiation
is a small difference of these two quantities. Any small imbalance or incon-
sistency in space and time between absorption and emission terms can lead
to instability. This difficulty requires that the source terms in the transport
equation be implicitly differenced when using Monte Carlo methods for its
solution [NS93].

The first successful – and now widely used – method for addressing this dif-
ficulty came from Fleck and Cummings [FC71], [BF86]. Their method, called
Implicit Monte Carlo (IMC), converts part of the absorption-emission cycle
into instantaneous effective scattering. The net effect of IMC is to reduce the
strength of the coupling between the photon transport equation and the ma-
terial energy equation by peeling off part of the coupling and treating it as
effective scattering. Stability is achieved by weakening the radiation-matter
coupling. This can lead to unphysical results [DL04] in addition to a signifi-
cantly increased execution time to handle the scattered photons.

A second approach to the problem of numerical stability was published
in [Bro89] and [NKa91]. In this scheme Monte Carlo particles are emitted
and tracked with weights that remain unknown to within a multiplicative
factor until the end of the integration cycle. This method, called Symbolic
Implicit Monte Carlo (SIMC), removes the costly effective scattering of IMC
and does not artificially weaken the radiation-matter coupling. However, in
thick systems the strong emission and absorption terms lead to increased
Monte Carlo noise.

The difference formulation for photon transport [SB05] directly addresses
the stiffness problem by employing a transformation that replaces the sponta-
neous emission term with source terms that are small when the local coupling
between spontaneous emission and absorption is strong. Our goal in this paper
is to explore whether or not the difference formulation is cleanly applicable to
the case of line transport. We implement and study a numerical application
of the difference formulation for the case of the transport of a single atomic
line, examining the issues of accuracy, stability and efficiency.

In Section 2 we introduce the equations for line transport first in the stan-
dard formulation, and then in the difference formulation. There, a difficulty
for the wings of the line appears that would force us to mix the standard for-
mulation with the difference formulation in order to treat a real line profile.
We conduct our numerical investigation with a gray (square) line shape func-
tion in order to sidestep the issue. The section concludes with a discussion of
our treatment of boundary conditions within the new formulation.

Section 3 addresses some details of the numerical treatment of the dif-
ference formulation, including the new source terms. The Symbolic Implicit
Monte Carlo (SIMC) solution method [Bro89], applied to the standard formu-
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lation, requires the solution of a linear system in order to update the atomic
populations at the end of each integration cycle. The corresponding popula-
tion update for the difference formulation is non-linear, requiring a Newton-
Raphson solver. Whether or not implicit treatment of the source terms is
required in the difference formulation is an open question that we investigate.
To this end, we develop three treatments of the source terms, each with differ-
ing levels of implicitness. Our explicit treatment is free of a non-linear matrix
solve, but is only conditionally stable. Our fully implicit treatment requires
a non-linear matrix solve, but numerical evidence suggests that it is uncon-
ditionally stable. A semi-implicit method is examined and gives some insight
into the numerical instabilities arising in the explicit treatment of the source
terms.

Next we compare the accuracy, efficiency and numerical stability of the
SIMC method in the standard formulation to our implementations of the
difference formulation in Section 4. We demonstrate that the difference for-
mulation delivers a startling decrease in noise, or an equivalent increase in
execution speed for a given noise figure, when compared to the Monte Carlo
solution of the standard formulation for transport. Finally, we present a sum-
mary of this work in the last section.

2 The Equations for Line Transport

We present the transport equations for photons for a two-level atomic sys-
tem in slab geometry, where the photons are emitted and absorbed according
to the same line profile, φ(ν), in the regime of complete redistribution. The
transport equation for photons is coupled to the population equations for the
atomic levels. Motion of the medium and physical scattering of photons are
not considered, but we include collisional pumping between atomic levels.

2.1 The Standard Formulation

In what we refer to as the “standard formulation,” we write the photon trans-
port equation as

∂f

∂t
+ cµ

∂f

∂x
=

n2

2
A21φ− c (K12n1−K21n2) φf , (1)

where c is the speed of light, x is the position coordinate perpendicular to the
slab, µ is the direction cosine of the radiation with respect to x axis, f(µ, ν, x, t)
is the photon number density distribution per unit atom density, n2(x, t) is the
upper level population fraction, n1(x, t) is the lower level population fraction,
A21 is the spontaneous emission rate, φ(ν) is the line profile normalized to
unit integral [Mih78], and K12 = κN where κ is the lower state absorption
cross section and N is the atom number density. The coefficient K21 satisfies
the Einstein relation
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K21 =
g1

g2
K12 , (2)

where g1 and g2 are the statistical weights for levels 1 and 2, respectively. For
the purposes of this paper, we consider all material parameters, C12, C21, A21,
K21 and K21 to be independent of x, constant in time, and assume complete
redistribution within the line shape.

The equations governing the atomic population fractions n1 and n2 are

∂n2

∂t
= C12n1 − C21n2 −A21n2 + c (K12n1−K21n2)

∫ 1

−1
dµ

∫ ∞

0

dν φ(ν)f(µ, ν)

(3)
and

n1 + n2 = 1 , (4)

where C12 and C21 are rate constants for the collisional transitions 1 → 2 and
2 → 1, respectively.

Using Eq. (4), equations (1) and (3) are rewritten as

∂f

∂t
+ cµ

∂f

∂x
=

n

2
A21φ− c [K12 − (K21 + K12)n]φf , (5)

and

∂n

∂t
= C12 − (C12 + C21 + A21) n

+ c [K12 − (K21 + K12) n]
∫ 1

−1

dµ

∫ ∞

0

dν φ(ν)f(µ, ν) , (6)

respectively, where n is the upper level population fraction. We refer to these
equations as the standard formulation for line transport in the context of this
paper.

2.2 The Difference Formulation

The difference formulation, introduced in [SB05], removes the spontaneous
emission term and the trouble it causes for thick systems through a sim-
ple transformation of the transport equation. The transformation produces a
transport equation with new source terms that are small for thick systems,
at least in the core of the line, and leads to an efficient numerical solution in
optically thick media.

For the case of line transport, the difference formulation is derived by
considering the radiation field that is in equilibrium with a given upper level
atomic population fraction

B(n(x, t)) =
n(x, t)A21

2c[K12 − n(x, t)(K21 + K12)]
. (7)
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The equilibrium field, B, defined in Eq. (7) is independent of photon frequency.
We begin the transformation to the difference formulation by rewriting

the spontaneous emission term from Eq. (5), as well as from Eq. (6), using the
equilibrium field, Eq. (7).

∂f(x, t; ν, µ)
∂t

+ cµ
∂f(x, t; ν, µ)

∂x
=

− c [K12 − (K21 + K12) n(x, t)]φ(ν) [f (x, t; ν, µ)−B(n(x, t))] , (8)

∂n(x, t)
∂t

= C12 − (C12 + C21) n(x, t) + c [K12−(K21+K12) n(x, t)]

×
∫ 1

−1

dµ

∫ ∞

0

dν φ(ν) [f(x, t; ν, µ)−B(n(x, t))] . (9)

Next, we define the “difference” intensity,

d(x, t; ν, µ) = f(x, t; ν, µ)−B(n(x, t)) . (10)

We note that this is our first sign of trouble for the difference formulation
when applied to the case of line transport. The fact that B does not depend
upon ν means that in the wings of the line where f is small – even for a system
that is thick in the core of the line – the difference field d must be large in
order to compensate. The result will be an increase in noise in the wings of
the line. We will return to this issue in what follows.

Substituting Eq. (10) into the transport equation gives

∂f(x, t; ν, µ)
∂t

+ cµ
∂f(x, t; ν, µ)

∂x
=

− c [K12 − (K21 + K12) n(x, t)]φ(ν)d(x, t; ν, µ) . (11)

We now subtract the derivatives of B from both sides, giving

∂d(x, t; ν, µ)
∂t

+ cµ
∂d(x, t; ν, µ)

∂x
=

− c [K12−(K21+K12) n(x, t)]φ(ν)d(x, t; ν, µ)

− ∂B(n(x, t))
∂t

− cµ
∂B(n(x, t))

∂x
. (12)

The population equation becomes

∂n(x, t)
∂t

= C12 − (C12 + C21) n(x, t)

+ c [K12 − (K21 + K12) n(x, t)]
∫ 1

−1

dµ

∫ ∞

0

dν φ(ν)d(x, t; ν, µ) . (13)
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We refer to these equations as the difference formulation of line transport.
Our formal manipulations give us two equivalent forms for the transport

and atomic population equations: Eqs. (5), (6) and Eqs. (12), (13). The two
sets of equations satisfy equivalent boundary and initial conditions and were
obtained without approximation.

2.3 Boundary Conditions for the Difference Formulation

In order to relate the boundary conditions for the standard formulation to
those for the difference formulation, we use the fact that the upper level atomic
population fraction n is the same for both and use the relation d = f −B(n)
to construct the d field from f . The strict non-negativity of f translates into
a lower bound for the difference field, d ≥ −B. When an initial condition
is specified for f , the corresponding condition for d can be obtained by the
above relation.

In this work the physical medium has finite extent with vacuum boundary
conditions. We specify that n be zero in the vacuum and thus d = f there,
accordingly. The emission from the surface into the vacuum is given by the
−cµ ∂B/∂x term at the boundaries, in addition to the particles that escape
from within. It consists of emission of positive d = f particles into the vacuum,
and negative d particles into the material, cooling it, and gives a natural
prescription for treating boundary conditions in the difference formulation.

2.4 The Gray Approximation

The line emission profile φ(ν) occurs in both the spontaneous emission and the
absorption terms for line transport. This leads to the frequency independence
of the equilibrium field, B(n(x, t)), and the result that the difference field
does not become small in the wings of the line as the optical thickness of the
problem is increased. In practical terms, this means that even the simplest
line transport problem must employ a mixing of the difference formulation in
the core of the line with the standard formulation in the wings.

Wanting to evaluate the effectiveness of the difference formulation in the
core of the line, we apply the gray approximation to Eqs. (5) and (6) giving

∂f

∂t
+ cµ

∂f

∂x
=

n

2
A21 − c [K12 − (K21 + K12)n] f , (14)

and

∂n

∂t
= C12−(C12 + C21 + A21) n+c [K12 − (K21 + K12) n]

∫ 1

−1

dµ f(µ) , (15)

respectively. The gray approximation is φ(ν) = 1/w for |ν − ν0| ≤ w/2 and
φ(ν) = 0 for |ν − ν0| > w/2, where ν0 is the line center frequency and w is
the line width. Both f and d depend only upon the angle and position, not on
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frequency, within the line. The line width, w, is factored out of the equations
by suitably redefining the fields.

Making the transformation to the difference field, the counterparts to
Eqs. (14) and (15) are

∂d(x, t;µ)
∂t

+ cµ
∂d(x, t;µ)

∂x
= − c [K12−(K21+K12) n(x, t)] d(x, t;µ)

− ∂B(n(x, t))
∂t

− cµ
∂B(n(x, t))

∂x
, (16)

and

∂n(x, t)
∂t

= C12 − (C12 + C21) n(x, t)

+ c [K12 − (K21 + K12)n(x, t)]
∫ 1

−1

dµ d(x, t;µ) , (17)

respectively. From these equations we develop three Monte Carlo methods
based upon different treatments of the source terms −∂B/∂t and −cµ ∂B/∂x.

3 Numerical Development

Let us divide the slab into N zones. The zones are labeled from 1 through
N from left to right with the position of the left edge of the ith zone labeled
xi. We specify an extra point, xN+1, to mark the position of the right-hand
boundary of the slab. We consider n to be piece-wise constant in space within
a zone, but allow it to vary continuously in time. Since B(n) behaves likewise,
let us write Bi(t) as the value of B in the ith zone at time t. Further, for the
purposes of this discussion, let us define B0 and BN+1 for the two boundary
regions, representing the boundary conditions to the left and right of the slab
respectively, in accordance with our treatment of boundary conditions in the
difference formulation introduced in the previous section. Then we may write

B(x, t) = B0 +
N+1∑
i=1

(Bi(t)−Bi−1(t))u(x− xi) , (18)

where u(x) is the unit-step function we define as u(x) = 1 for x > 0, u(x) = 0
for x ≤ 0.

Generally, the total Monte Carlo weight to be emitted from a source S is
given by the integral

W =
∫

R

S dR , (19)

where R is the finite volume element of the relevant phase space used in the
numerical model and dR is its infinitesimal. For this model R is 2∆x∆t, and
so we may write
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W t = −
∫ µ=+1

µ=−1

dµ

∫
∆x

dx

∫
∆t

dt
∂B

∂t
, (20)

and

W x = −c

∫ µ=+1

µ=−1

dµ

∫
∆x

dx

∫
∆t

dt µ
∂B

∂x
, (21)

where the superscripts t and x indicate the weight emitted by the −∂B/∂t
and the −cµ ∂B/∂x source, respectively. The probability distribution function
of the physical variables to be sampled is given by

g =
S

W
, (22)

for a source S emitting weight W . We use these relations to develop the foun-
dation for three Monte Carlo methods for solving the difference formulation
for atomic line transport, Eqs. (16) and (17).

3.1 Source Terms

The spontaneous emission term, nA21/2, in the standard formulation, Eq. (14),
is replaced by two new source terms, namely −∂B/∂t and −cµ ∂B/∂x, in the
difference formulation, Eq. (16). The new source terms play different roles than
the spontaneous emission term of the standard formulation. The −cµ ∂B/∂x
term is responsible for driving the transport of the d field through the slab,
and the −∂B/∂t term acts to compensate for changes in the reference field
B(n) by changing the d field in order to hold f fixed.

Source Term −∂B/∂t

We evaluate Eq. (20) for a given zone i giving the weight to be accorded to
the −∂B/∂t source term:

W t
i = −

∫ µ=+1

µ=−1

dµ

∫
∆xi

dx

∫ t0+∆t

t0

dt

(
∂B

∂t

)
i

= −2∆xi [Bi(t0 + ∆t)−Bi(t0)] , (23)

where we have used the piece-wise constant property of B in the integral over
∆xi.

Now we may write the distribution function for the source in zone i using
Eq. (22)

gt
i =

(∂B/∂t)i

2∆xi [Bi(t0 + ∆t)−Bi(t0)]
. (24)

Further development of the distribution function depends upon assumptions
about the nature of the differencing employed and varies with our construction
of the Monte Carlo methods we use for the difference formulation. We will
address the details of our construction later in this work.
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Source Term −cµ ∂B/∂x

Now let us consider the space-derivative term. Due to the piece-wise constant
treatment of n, this source term is non-zero only at a discontinuity in the value
of n between two adjoining zones or at a discontinuity between the surfaces
of the slab and its surroundings.

The derivative ∂B/∂x gives

∂B

∂x
=

N+1∑
i=1

(Bi(t)−Bi−1(t)) δ(x− xi) , (25)

where δ is the Dirac delta function.
Since −cµ ∂B/∂x is an odd function of µ in slab geometry, the sum of

the weight emitted from this source over all angles {θ : µ = cos θ} is zero.
Nevertheless, it is not correct to ignore the source; −cµ ∂B/∂x is responsible
for driving the transport of d particles through the slab. Our solution is to
emit d-particle pairs of equal and opposite weight in +µ and −µ directions,
thereby assuring that zero net weight is emitted without statistical noise.

To find the weight to be emitted, say in the +x direction in the ith zone,
we integrate the −cµ ∂B/∂x source from µ = 0 to µ = 1

W+x
i = −c

∫ µ=1

µ=0

µdµ

∫ t0+∆t

t0

dt

∫ xi+∆xi

xi

dx δ(x− xi)[Bi(t)−Bi−1(t)] =

− c

2

∫ t0+∆t

t0

dt [Bi(t)−Bi−1(t)] . (26)

Weight emitted in the −x direction is identical, except for a change in sign.
Now we may write the distribution function for the source in the +x

direction in zone i using Eq. (22)

g+x
i =

2µδ(x− xi) [Bi(t)−Bi−1(t)]∫ t0+∆t

t0
dt [Bi(t)−Bi−1(t)]

. (27)

The presence of the δ-function tells us that the particles are to be emitted at
zone boundaries. Emission angles are sampled according to µ =

√
ρ, where ρ

is a random variate uniformly distributed between 0 and 1.

3.2 Solution Methods

We construct three different Monte Carlo solution methods employing the
difference formulation for the transport of an atomic line. In the construction
we address the details of the treatment of the source terms. The solution
methods utilize different degrees of implicit treatment of the source terms,
with each succeeding method being more implicit than the one before it.
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We begin by integrating Eq. (17) over a time step, approximating n(t) by
n(t0 + ∆t) in the collision (pumping) terms and by n(t0) in the absorption
term, giving

n(x, t0 + ∆t) = n(x, t0) + [C12 − (C12 + C21) n(x, t0 + ∆t)]∆t

+ c [K12 − (K21 + K12) n(x, t0)]
∫ t0+∆t

t0

dt

∫ 1

−1

dµ d (x, t;µ) , (28)

where t0 is the census time of the previous Monte Carlo integration cycle and
t0 + ∆t is the census time of the current cycle. This intermediate step is the
common point of departure for the three Monte Carlo solution methods.

We would like to note that for the difference formulation the source terms
of the transport equation, Eq. (16), do not appear in the material response
equation, Eq. (17), and are likewise absent in Eq. (28). This is in contrast to
Eqs. (14) and (15), where the spontaneous emission term, A21n, appears in
both the transport and the material response equation, causing stiff coupling
between them. The self-consistent differencing of the spontaneous emission
term in Eqs. (5) and (6), for the purpose of stability, leads to effective scat-
tering in the IMC method discussed in [BF86], and the linear system solve in
the SIMC method discussed in [Bro89].

The Explicit Solution Method

In this method there is no implicit treatment of the sources and, unlike SIMC,
it does not require the inversion of a matrix at the end of each Monte Carlo
integration cycle in order to calculate ni(t0 + ∆t). In this scheme −cµ ∂B/∂x
is explicitly differenced at time t0, and the action of −∂B/∂t is delayed until
the end of the integration loop, at which point n(t0 + ∆t) is available.

Starting with the −∂B/∂t source for zone i, we approximate(
∂B

∂t

)
i

≈ Bi(t0 + ∆t)−Bi(t0)
∆t

. (29)

Substituting this result into Eq. (24) gives

gt
i =

1
2 ∆xi ∆t

, (30)

which directs us to distribute the weight given in Eq. (23) evenly within the
zone.

Considering the −cµ ∂B/∂x source, we take Bi(t) → Bi(t0), the value of
Bi at the beginning of the time interval. Substituting this into Eq. (26) gives

W+x
i = −c∆t

2
[Bi(t0)−Bi−1(t0)] , (31)

for emission in the +x-direction. And Eq. (27) becomes
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g+x
i =

2µδ(x− xi)
∆t

, (32)

where the weight of the source is to be distributed evenly throughout the time
interval ∆t, but the emission is to take place on the zone boundary xi.

At the beginning of each iteration of the Monte Carlo integration loop, dif-
ference particles from the −cµ ∂B/∂x source are emitted at the zone bound-
aries using B(t0), and distributed uniformly in time across the time step inter-
val ∆t. The particles are then propagated to census time, t0 + ∆t, according
to Eq. (16) before n(t0 + ∆t) is calculated.

To obtain ni(t0 + ∆t), write Eq. (28) as

ni(t0 + ∆t) = γni(t0) + γC12∆t +
γc

∆xi
[K12 − (K21 + K12)ni(t0)]Di , (33)

where i is the zone index, ∆xi is the width of the zone,

γ =
1

[1 + (C12 + C21)∆t]
, (34)

and where

Di =
∫

∆t

dt

∫
∆xi

dx

∫ 1

−1

dµ d (x, t;µ) (35)

is the time integral of the d-field calculated from Monte Carlo particles trav-
eling through zone i during the time step.

Now that we have an estimate of ni(t0 + ∆t) from Eq. (33), difference
particles sample the −∂B/∂t source with the total weight given by Eq. (23)
and are evenly distributed in space within a zone. This emission is not evenly
distributed across the time step, it has a time coordinate of t0+∆t, the census
time of the current integration interval. This sequence is then repeated for the
next time step.

The Semi-Implicit Solution Method

We call this method “semi-implicit” because we implicitly difference the
−∂B/∂t source term, but explicitly difference the −cµ ∂B/∂x source term.
The implicit differencing of the −∂B/∂t source term leads to a matrix solve
at the end of each iteration of the Monte Carlo integration loop. Our purpose
in examining this method is to provide insight into the sources of numerical
instability of the fully explicit method described previously. Once one must
pay the cost of the non-linear matrix solve, one might as well extract the
benefits of a fully implicit solution method.

In this semi-implicit treatment of the source terms for the difference formu-
lation, the emission from −∂B/∂t is calculated at the start of the integration
loop, not postponed until the end as in the explicit scheme just discussed.
The weight emitted is given by Eq. (23). However, Bi(t0 + ∆t) is unknown
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at this point, and a portion of the weight, −2∆xi, is “symbolic” in the same
vein as in [Bro89] and requires a non-linear matrix solve at the end of each
Monte Carlo integration cycle. The remaining portion, 2∆x Bi(t0), contains
no unknown factors and provides known (numeric) contributions to the d-
field. The particles are created with time coordinates uniformly distributed
over the interval ∆t, as dictated by Eq. (30), in contrast to the explicit case
where their time coordinates are set to census time.

Next, the −cµ ∂B/∂x source is sampled in the same way as in the explicit
treatment above, and d-particles with weight given by Eq. (31) are created.
These particles, fully numeric contributions to the d-field, are distributed in
space, time and direction according to Eq. (32).

This treatment of the source terms leads to the following representation
of Eq. (28):

ni(t0 + ∆t) = γni(t0) + γC12∆t

+
γc

∆xi
[K12 − (K21 + K12)ni(t0)]×

Di +
N∑

j=1

Dij Bj(t0 + ∆t)

 . (36)

Here Dij is the symbolic contribution to the ith zone from particles born in
the jth zone, and Di is the contribution to zone i coming from particles with
numeric weights in much the same way as in Eq. (33), including the numeric
contributions from −∂B/∂t and −cµ ∂B/∂x sources. The sole contributor to
symbolic energy depositions is the forward-differenced portion of −∂B/∂t.

Since B is non-linear in n, Eq. (36) represents a non-linear system that
must be solved for nj(t0+∆t) at the end of each cycle through the integration
loop, whereas the equivalent expression in [Bro89] represented a system linear
in n. We iterate the Newton-Raphson algorithm to solve the non-linear system
for nj(t0 + ∆t), and then use B(nj(t0 + ∆t)) to convert the Monte Carlo
particles with symbolic weights to numeric weights. In this way the d-field, at
census, is fully numeric and free of unknown factors before the next iteration
of the Monte Carlo integration loop.

The Implicit Solution Method

We call this method “implicit” because we treat both the −cµ ∂B/∂x and the
−∂B/∂t source terms implicitly in time. By taking Bi(t) → Bi(t0 + ∆t), in-
stead of Bi(t) → Bi(t0) as in the last two methods introduced above, Eq. (26)
becomes

W+x
i = −c∆t

2
[Bi(t0 + ∆t)−Bi−1(t0 + ∆t)] . (37)

Eq. (32) remains unchanged.
The sequence of calculations in the integration loop is similar to that

used in the semi-implicit method above. First, particles sampling the −∂B/∂t
source are emitted with a portion of their weight numeric, −2∆xi Bi(t0), and



An Evaluation of the Difference Formulation. . . 13

the remainder symbolic, −2∆xi, according to Eq. (23) and exactly like the
semi-implicit method. Next, −cµ ∂B/∂x is sampled according to Eq. (32), but
in this case the weight is purely symbolic.

We write Eq. (28) as

ni(t0 + ∆t) = γni(t0) + γC12∆t +
γc

∆xi
[K12 − (K21 + K12)ni(t0)]

×

Di +
N∑

j=1

Dt
ij Bj(t0 + ∆t) +

N+1∑
k=1

Dx
ik [Bk(t0 + ∆t)−Bk−1(t0 + ∆t)]


(38)

where we introduce the new symbolic contribution, Dx
ik, of the −cµ ∂B/∂x

source emitted from zone k and propagated to zone i, where [Bk(t0 + ∆t)
−Bk−1(t0 + ∆t)] is the factor necessary to convert that symbolic weight into
numeric weight. One may consider the last summation as one over zone in-
terfaces while remembering that the index k in Bk and Bk−1 refers to zone
indices. The term Dt

ij represents the symbolic contribution of the −∂B/∂t
source, the Di term includes the numeric contributions from −∂B/∂t sources,
and Bj(t0 +∆t) plays the same role in this equation as it does in Eq. (36). B0

and BN+1 are prescribed boundary conditions.

4 Numerical Results in the Gray Approximation

We select the SIMC solution method in the standard formulation as a point
of comparison for the difference formulation [SB05]. We discuss the numerical
accuracy and efficiency, and report on the numerical stability of each of the
three Monte Carlo solution methods we developed in the previous section, with
emphasis on exploring the stability characteristics of the fully explicit version,
itself free of a matrix solve at the end of each integration cycle, relative to the
SIMC treatment of the standard formulation for a range of optical thicknesses.
We do not address the issue of teleportation error [MBS03] in this work. For
the sake of brevity, we refer to each of the Monte Carlo solution methods we
developed above for the difference formulation for atomic line transport as one
of a trio of “difference methods” and to SIMC for the standard formulation as
the “standard method.” The problems were run until equilibrium was reached.

4.1 Relative Accuracy and Efficiency

Table 1 lists the parameters describing the initial and boundary conditions
and the material parameters we use in comparing the SIMC method (stan-
dard method) for the standard formulation to each of the three Monte Carlo
methods (difference methods) developed in the previous section for the differ-
ence formulation. In all calculations the slab is initialized with n = 0.25 for
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all zones and the photon fields f(t = 0) = 0. This initial state for the photon
field, f , corresponds to a non-zero initial difference field, d, which must be
sampled to properly initialize the system. While this provides a net zero pho-
ton field in each zone, the statistical nature of sampling leads to small, local
fluctuations. As we will show, this in turn can lead to differences among the
methods in their transient behavior, even in the limit of short time steps.

The optical depth for this model depends on the value of n(x, t). We first
tune the input parameters using the standard method to obtain the desired
nominal optical depth, then use the same input values for the difference meth-
ods.

Table 1. Input parameters used for all Monte Carlo solution methods describing
the initial conditions, boundary conditions, and material properties of the unit slab.

Value
Parameter Nominal

Optical Depth
= 1

Nominal
Optical Depth

= 10

Nominal
Optical Depth

= 100

Nominal
Optical Depth

= 1000

n(0 ≤ x ≤ 1, t = 0) .25 .25 .25 .25

f(x, µ, t = 0) 0 0 0 0

n(x < 0, t) 0 0 0 0

n(x > 1, t) 0 0 0 0

A21 10 10 10 10

K12 1.125 18 207.5 2155

K21 1.125 15.3422 207.5 2155

C12 0.245423 0.245423 0.245423 0.245423

C21 0.667128 0.667128 0.667128 0.667128

In order to more faithfully reproduce the boundary layer near the edges
of the slab for thicker problems, we find it necessary to modify the zoning,
depending upon optical thickness, and this can influence execution time. Since
the gradient of n in space varies slowly and more uniformly over the length of
the slab in the thin problems – optical thicknesses 1 and 10 – we model the slab
using 21 zones of uniform size in thin systems. However, for thick problems
– optical thicknesses of 100 and 1000 – gradients in n are concentrated in
the boundary layers. For these we use small zones in the boundary layers and
increase their size in a geometric progression towards the center of the slab.
Thus, we can compare accuracy and efficiency among methods for a given
optical thickness only.

Relative Accuracy

Table 2 demonstrates the accuracy of the three Monte Carlo solution methods
relative to the SIMC method for a simple, two-level, system in slab geometry.
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The data consist of the means and standard deviations of 120 statistically in-
dependent calculations of the optical thickness of the slab for each method, in
equilibrium, for the fixed input parameters shown in Table 1. The results show
that the means of the calculated optical thicknesses are within one standard
deviation of each other. Therefore, the results are statistically consistent with
the assertion that all three Monte Carlo solution methods in the difference
formulation converge to the same result as SIMC in the standard formulation
in equilibrium. It is interesting to note that the standard deviations of the
difference methods are approximately independent of optical depth, whereas
those of SIMC increase several orders of magnitude as optical depth increases.

Table 2. The means and standard deviations of the optical thickness of a unit slab
calculated using each of the three difference methods and the standard method at
equilibrium. All calculations are matched in execution time.

Optical
Thick-
ness

Difference
Method:
Explicit

Difference
Method:

Semi-Implicit

Difference
Method:
Implicit

Standard
Method

1 1.0087± 2× 10−4 1.0088± 1× 10−4 1.0087± 1× 10−4 1.00873± 8× 10−5

10 10.067± 1× 10−3 10.067± 1× 10−3 10.0671± 9× 10−4 10.067± 4× 10−3

100 98.655± 1× 10−3 98.654± 1× 10−3 98.653± 1× 10−3 98.65± 8× 10−2

1000 998.726± 1× 10−3 998.726± 1× 10−3 998.7263± 9× 10−4 998.7± 9× 10−1

Relative Efficiency

The variance in a Monte Carlo calculation scales inversely with the number of
particles used, in the limit of large particle count. We use this fact as a means
to evaluate the relative efficiency of the methods for a given discretization
of the problem. We match the run-times among the methods by adjusting
the number of Monte Carlo particles used in each, taking care to ensure that
the Monte Carlo effort dominates the calculation and that the variance scales
appropriately with the number of Monte Carlo particles. Then the variances
of the calculations are inversely proportional to the relative efficiencies of the
methods. This is how we estimate the run-time advantage of the difference
methods over the standard method.

Table 3 consists of the variances of the optical depths presented in Table 2,
and Table 4 shows the calculated speed-up factors, based upon the measure-
ments in Table 3. All three difference methods show a clear run-time advantage
over the standard formulation for thick systems. The advantage is striking at
an optical depth of 1000 mean free paths. However, as Table 4 shows, for thin
problems the advantage diminishes and is lost completely somewhere between
optical depths of 10 and 1, corresponding to a per-zone optical depth of 0.5
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and 0.05, respectively. For thick systems, the desired statistical accuracy is
achieved with a much lower particle count.

Table 3. The variances of the optical thickness of a unit slab calculated using the
three difference methods and the standard method at equilibrium.

Nominal
Optical

Thickness

Difference
Method:
Explicit

Difference
Method:

Semi-Implicit

Difference
Method:
Implicit

Standard
Method

1 3.0× 10−8 1.5× 10−8 1.4× 10−8 6.0× 10−9

10 1.1× 10−6 1.0× 10−6 8.2× 10−7 1.8× 10−5

100 1.1× 10−6 1.2× 10−6 9.3× 10−7 6.9× 10−3

1000 9.6× 10−7 1.0× 10−6 6.0× 10−7 8.7× 10−1

Table 4. Speed-up factors of the three difference methods over the standard method
for various nominal optical thicknesses.

Nominal
Optical

Thickness

Difference
Method:
Explicit

Difference
Method:

Semi-Implicit

Difference
Method:
Implicit

1 2.0× 10−1 4.0× 10−1 4.3× 10−1

10 1.6× 101 1.8× 101 2.2× 101

100 6.3× 103 5.8× 103 7.4× 103

1000 9.1× 105 8.7× 105 1.5× 106

4.2 Transient Behavior of the Difference and Standard
Formulations

While we do not expect two different solution methods, such as the standard
method and any one of the three difference methods, to behave identically
during the first few time steps of the integration, we do expect their behaviors
to converge for sufficiently small time step sizes.

This is indeed the case. Figures 1 through 6 show the transient behavior
of n(t), the fraction of atoms in the excited state, in the central zone of a
slab with an optical thickness of 10 mean free paths at equilibrium. Figures 1
through 4 show the transient behavior of each of the three difference methods,
with Figures 5 and 6 showing the transient behavior of the standard method.
Each figure shows graphs of n(t) calculated with different time step sizes in
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Fig. 1. Transient behavior of n(t) – the fraction of atoms in the excited state – in
the central zone for the explicit difference method.

units of (slab length)/c, where c is the speed of light in the material (set to 1
in this work).

Initially the slabs have uniform excitation energies corresponding to n(x, t =
0) = 0.25, but there are no photon fields. At the start, the radiation field and
the material energy are out of equilibrium, with n falling initially in order
to bring about radiative equilibrium. The motion of n is then driven by the
net collisional excitation and absorption, recovering on a longer time scale.
Each of the difference methods and the standard method show this behavior
and agree qualitatively. Note the overshoot in the standard formulation and
explicit implementation of the difference formulation for long time steps in
Figures 2 and 6. One can see that while similar, the overshoot for the stan-
dard implementation is more pronounced. The quantitative agreement among
the methods improves with decreasing time step sizes, and Figure 7 shows
good overlap for a time step size of 0.00625.

Aside from the noise apparent in the standard method as the magnitude
of the photon field grows, there is a small but discernible difference in the
minimum of n(t) among the four methods. We believe this is due to sampling
noise. Recall that initializing the photon field to zero in the difference formu-
lation requires sampling d(t = 0) so that f = d + B(t = 0) = 0. Statistical
fluctuations in the Monte Carlo sampling of the physical coordinates of the
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Fig. 2. Detail of the transient behavior of n(t) – the fraction of atoms in the excited
state – in the central zone for the explicit difference method.

particles composing this initial d-field leads to small, localized fluctuations
that can affect n shortly after t = 0.

Table 5 shows the average and one standard deviation of the minimum n
reaches for 200 statistically independent calculations using each of the three
difference methods and the standard method, all matched in execution time.
The time step size used in each calculation is 0.00625, the same as in Figure
7. Also shown are the average and standard deviation of the times at which n
reached its nadir in the calculations. Table 5 shows that the three difference
methods and the standard method produce minima of the same magnitude
and at the same time, within the estimated uncertainties. Thus we show that
not only do the difference methods agree with the standard method in equilib-
rium (see Table 2) they also agree in the transient behavior of n for sufficiently
small time step sizes.

4.3 Numerical Stability of the Difference Formulation

We explore the stability characteristics of the three different treatments of
the source terms in the difference formulation for line transport. Of particular
interest is the numerical stability of the explicit treatment, since it is free of
a matrix solve in the Monte Carlo integration cycle and will thus remain eco-
nomical as the number of zones in the problem increases. We find the implicit
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Fig. 3. Transient behavior of n(t) – the fraction of atoms in the excited state – in
the central zone for the semi-implicit difference method.

Table 5. The mean and standard deviation of the minimum n and the time of its
nadir. Quantities were calculated using the three versions of the difference method
and the standard method.

Monte Carlo Solution Methods Minimum n Time of Nadir of n

Difference: Explicit 0.204± 0.001 0.197± 0.008
Difference: Semi-Implicit 0.204± 0.001 0.196± 0.008
Difference: Implicit 0.204± 0.001 0.196± 0.008
Standard Method 0.2041± 0.0001 0.193± 0.004

treatment, Eq. (38), for the difference formulation to be numerically stable for
optical thicknesses ranging from 1 to 1000, even for time step sizes on the
order of 10 light travel times across the slab, and we expect the treatment to
remain stable for thicker systems. This provides numerical evidence that this
treatment of the source terms is unconditionally stable. We find that both the
explicit and the semi-implicit treatments, Eqs. (33) and (36), respectively, are
only conditionally stable. For these treatments of the source terms, stability
depends upon the optical depth of the slab, the size of the zones, and the
size of the time step. Figures 8 and 9 show the approximate neighborhood
of the onset of instability for both treatments. The methods are numerically
unstable in the regions above their graphs. Beyond a certain optical thickness,
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Fig. 4. Transient behavior of n(t) – the fraction of atoms in the excited state – in
the central zone for the implicit difference method.
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Fig. 5. Transient behavior of n(t) – the fraction of atoms in the excited state – in
the central zone for the standard method.
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Fig. 6. Detail of the transient behavior of n(t) – the fraction of atoms in the excited
state – in the central zone for the standard method.
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Fig. 7. Transient behavior of n – the fraction of atoms in the excited state – of the
three difference methods and the standard method.
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Fig. 8. Graphs of the time step size versus optical depth of the slab near the edge of
numerical stability for the explicit and semi-implicit difference methods. Two zone
thicknesses are shown. The vertical axis is in units of (slab length)/c. Instability for
a given treatment of the source terms occurs above the line. Beyond the termination
of the lines, the calculations are stable for any time step.

the systems become stable for practically any time step size, so the graphs
terminate. The calculations were run until the systems were well equilibrated,
with unstable calculations identified when we observed the characteristic, ge-
ometrically growing oscillation about equilibrium with a period of 2∆t in the
graphs of n(t).

Whereas the explicit differencing of the standard formulation is known to
be stable for thin and unstable for thick systems [FC71], we find the contrary
for the semi-implicit and fully explicit difference methods. Thus, in the explicit
treatment of the difference formulation it appears that we trade numerical
stability in thin systems for numerical stability in thick systems.

Figures 8 and 9 show that the regions of stability for both the explicit
and the semi-implicit methods are similar in shape. It is apparent in both
figures that the explicit treatment requires shorter time steps in order to
obtain stability. For thin systems the stability of both treatments is insensitive
to the zone size, as shown in Figure 9. For thick systems the constraint on
the time step size in order to obtain stability is relaxed as the zone size is
increased. Both figures demonstrate that the optical thickness of the zones is
an important factor in the stability of the calculations.
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Fig. 9. Graphs of the time step size versus zone size near the edge of stability for
the explicit and semi-implicit difference methods. The slabs are divided into zones of
uniform size and two optical depths for each scheme are shown. The vertical axis is
in units of (slab length)/c, and the horizontal axis is in fractions of the total length
of the unit slab.

It is interesting to note the weakness of the dependence of both the semi-
implicit and explicit treatments of the source terms on the zone size, ∆x,
for thin systems. Terms in the finite difference equations, Eqs. (33) and (36),
that depend upon zone size have little apparent influence upon the stability
of those solution methods. Additionally, since both treatments of the source
terms have similar regions of stability, a formal stability analysis of the simpler
explicit formulation may give insight into the stability criterion of the more
complicated, semi-implicit method.

For the slab geometry, collisional-pumped, line-trapping problems studied
here, the explicit treatment of the source terms, unencumbered by a non-linear
system solve at each time step, appears no more economical than the semi-
implicit method, which is more stable. One should consider, however, that
the cost of the non-linear system solve grows rapidly as one scales the number
of zones in the problem. Further, while the implicit scheme demonstrates
superior stability characteristics, it too relies upon a non-linear system solve
at each time step. The primary difference between the conditionally stable
semi-implicit method and the unconditionally stable implicit method is in
the treatment of the −cµ ∂B/∂x-term. In addition, since the −∂B/∂t-term is
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explicitly treated in the explicit method and implicitly treated in the semi-
implicit method without a great difference in the stability regions for the two,
we believe that the explicit differencing of the −cµ ∂B/∂x-term is responsible
for driving the numerical instability.

5 Concluding Remarks

In this paper we examined the accuracy and performance of the difference for-
mulation [SB05] relative to the Symbolic Implicit Monte Carlo (SIMC) [Bro89]
solution method applied to the standard formulation of photon transport in a
strongly absorbing/emitting two level system using the gray approximation.
We developed three different numerical treatments of the difference formu-
lation and presented evidence of their superior computational efficiency for
thick systems. We found that to an equivalent noise figure, the difference
methods were 106 times faster than the standard method for slabs 1000 mean
free paths thick, or equivalently, provide a 103 reduction in Monte Carlo noise
for a given execution time.

We demonstrated that the three implementations of the difference formula-
tion we developed were in excellent agreement with the SIMC implementation
of standard formulation. Additionally, we showed through a detailed compar-
ison that while their transient behavior differs for large time steps there is
good numerical evidence that all the treatments of the source converge for
sufficiently small time steps.

We found that the fully implicit version of the difference formulation is
stable, and we believe it to be unconditionally so. The fully explicit version,
although free of any matrix solve, is only conditionally stable. Moreover, it
possess a stability region similar to the semi-implicit difference method which
may provide insight into a formal stability analysis. For both conditionally sta-
ble versions of the difference formulation, stability appears to depend strongly
upon the optical thickness of the zones dividing the material. Finally, we be-
lieve that it is the explicit treatment of the −cµ ∂B/∂x term that drives the
instability in the explicit difference method.

As a final note, the explicit treatment of the source terms in the standard
formulation is stable in the limit of optically thin systems, while the explicit
source term treatment of the difference formulation is stable in the limit of
optically thick systems. This leaves open the possibility that the non-linear
matrix solve might be avoided when applying the difference formulation to
practical problems involving thick media.
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